Решение треугольников

  • Корзина

    Пусто

Содержание страницы:

  • – задачи 76 - 77 представлены с примерами решений и ответами по теме "Решение треугольников";
  • – онлайн задания, как найти решение треугольника через синус и косинус угла, рассматриваются в тестах 78 - 81;
  • – решения, как найти угол, сторону треугольника, объясняются в контрольных работах 82 - 85.

Задача 76.

Дано:

Треугольник ΔABC,

стороны треугольника a=10, b=7

Угол A = 60°

Решить треугольник: Угол по сторонам треугольника B, C, сторону c

Решение:

Известно, что формула синуса

, получаем выражение

Sin B = = = = ≈ 0,6062

Используя Sin B ≈ 0,6062, находим из тригонометрической таблицы ("Четырехзначные математические таблицы" Владимира Модестовича Брадиса)

B = 37°19’

Тогда C = 180° - (60° + 37°19’) = 82°41’

Используя теорему синусов

, получаем равенство

с=≈ 11

 

Ответ: B = 37°19’; C = 82°41’; c ≈ 11

***

 

Задача 77.

Дано:

Треугольник ΔABC, стороны треугольника

a=6,3

b=6,3

C = 54°

Найти: Угол по сторонам треугольника A, B, сторону c

Решение:

Т.к. a=b=6,3, то треугольник ΔABC - равнобедренный.

Тогда A =B = (180° - 54°): 2 = 63°

Используя теорему синусов

, получаем равенство

с = = ≈ 5,7

Ответ: A =B = 63°; с ≈ 5,7

***

 

Наверх

Решение треугольников через синус и косинус угла

Задача 78.

Дано:

Треугольник ΔABC

A = 60°

B = 40°

c=14

Найти: угол треугольника C, стороны a,b

Решение:

C = 180° - (40° + 60°) = 80°

Используя теорему синусов

, получаем выражение

a = ≈ 12

b = ≈ 9

Ответ: C = 80°; a ≈ 12; b ≈ 9

***

 

Задача 79.

Дано:

Треугольник ΔABC

BC=a=6

AC=b=7,3

AB=c=4,8

 

Найти: углы треугольника A, B, C по сторонам

Решение:

Известно, что формула косинуса

, находим косинус угла B

Cos B = = = = ≈ 0,0998263

Используя тригонометрические таблицы ("Четырехзначные математические таблицы" В. М. Брадиса), находим значение угла B

B = 84°16’

Используя формулу теоремы косинусов, находим косинус угла C

Cos C = = =

= ≈ 0,7562785

Используя тригонометрические таблицы ("Четырехзначные математические таблицы" В. М. Брадиса), находим значение угла C

C = 40°52’

Тогда угол A равен A =180° - (40°52’ + 84°16’) = 55°32’

Ответ: A = 55°32’ ; C = 40°52’ ; B = 84°16’

***

 

Задача 80.

Дано:

Треугольник ΔABC

A = 30°

C = 75°

b = 4,5

 

Найти: угол B, стороны треугольника a,c

Решение:

B = 180° - (30° + 75°) = 75°

Т.к. два угла в треугольнике равны B =C = 75°, тогда треугольник ΔABC - равнобедренный.

Значит, две стороны равны AC=AB=b=c=4,5

Используя теорему синусов

,

находим сторону BC=a

a = ≈ 2,3

Ответ: B = 75°; a ≈ 2,3 ; c = 4,5

***

 

Задача 81.

Дано:

Треугольник ΔABC, длины трех его сторон

 

1) a=5 , b=c=4

2) a=5 , b=9 , c=6

3) a=17 , b=15 , c=8

 

Найти: является ли треугольник тупоугольным, прямоугольным, остроугольным

Решение:

1) Т.к. b=c=4, то треугольник ΔABC - равнобедренный, и, значит, остроугольный.

 

2) Используя формулу теоремы косинусов

, находим косинус угла A

Cos A = = =0

Тогда угол A равен A = 90°. Следовательно, треугольник ΔABC - прямоугольный.

 

3) Используя формулу теоремы косинусов

, находим косинус угла B

Cos B = == -< 0.

Т.к. значение косинуса угла B меньше нуля, следовательно, угол B - тупой, а треугольник ΔABC - тупоугольный.

***

 

Наверх

Решение треугольника через угол по сторонам

Задача 82.

Дано:

Треугольник ΔABC, два угла и сторона

A = 45°

C = 30°

AD = 3 м

Найти: длину всех сторон треугольника ΔABC = ?

Решение:

Зная размер двух углов в треугольнике ΔABC, находим третий уголB = 180° - (30° + 45°) = 105°

Найдем угол DAB и рассмотрим ΔADC

DAB = 180° - (90° + 45 + 30°) = 15°

DAC = 15° + 45° = 60°

Используя теорему синусов

, находим сторону AC

AC = (3 • 1) • 2 = 6 (м)

Используя теорему синусов

, находим сторону AB

AB = ≈ 3 (м)

Используя теорему синусов

, находим сторону BC

BC =≈ 4 (м)

Ответ: AB ≈ 3 м, AC = 6 м, BC ≈ 4 м.

***

 

Задача 83.

Дано:

Треугольник ΔABC

Три стороны a = 14, b = 18,

c = 20

Найти:

все углы треугольника ΔABC = ?

Решение:

Т.к. против большего угла лежит большая сторона, то используя формулу теоремы косинусов

Cos C =, находим косинус угла C

Cos C = = ≈ 0,24

Используя тригонометрические таблицы ("Четырехзначные математические таблицы" В. М. Брадиса), находим приближенное значение угла C

C ≈ 76°13’

Используя формулу теоремы косинусов

Cos B =, находим косинус угла B

 

Cos B = ==≈ 0,4857

Используя тригонометрические таблицы ("Четырехзначные математические таблицы" В. М. Брадиса), находим приближенное значение угла B

B ≈ 60,941 ≈ 60°57’

Следовательно, A = 180° - (76°13’ + 60°57’) ≈ 42°50’

Ответ: A ≈ 42°50’ ; B ≈ 60°57’ ; C ≈ 76°13’

***

Задача 84.

Дано:

Треугольник ΔEKP, сторона и два угла

EP = 0,75

P = 40°

K = 25°

 

Найти: сторону треугольника PK = ?

Решение:

Используя теорему синусов

, находим сторону PK

E = 180° - (40° + 25°) =115°

Sin 115° = Sin (180° - 65°) = Sin 65°

Тогда

 

PK = ≈ 1,61

Ответ: PK ≈ 1,61.

***

 

Задача 85.

Дано:

Треугольник ΔABC, две стороны и угол

b = 18, c = 12

A = 50°

 

Найти: решить треугольник - определить значение стороны и двух углов

(a, B, C ) = ?

Решение:

Используя формулу теоремы косинусов

, получаем

a = = ≈ 13,8

Используя формулу теоремы косинусов

Cos C =, находим косинус угла C

Cos C == ≈ 0,7457

Используя тригонометрические таблицы ("Четырехзначные математические таблицы" В. М. Брадиса), находим приближенное значение угла C

C ≈ 41°47’

Следовательно, B = 180° - (50° + 41°47’) ≈ 88°53’

Ответ: a ≈ 13,8 ; B ≈ 88°53’ ; C ≈ 41°47’

***